Brachial Plexus Injury-Surgical Management

Presenter Dr Amol Raheja

Moderator Dr Vivek Tandon

Historical Aspects

- First surgical repair of BPI Late 1900's
- Results however disappointing
- Mid-196o's Narakas and Millesi
- Microsurgical techniques for nerve grafts coaptation developed
- Improved diagnostic modalities –
- ✓ EMG/NCV
- CT myelography
- ✓ MRI

Key Elements in BPI Mx

- Non-operative care
- Selection
- Timing
- Priorities
- Methods

Non-operative Care

- Stabilization of life threatening injuries
- Maintaining range of motion of joints, muscles and tendons
- Aggressive physiotherapy
- Splints or casts if required
- Mx of Neuropathic pain Anticonvulsant + Opiods

Timing of Surgery

Primary Surgery

- Penetrating Injury Immediate exploration & repair
- Stretch Injury 3-4 months after injury
- √ To allow spontaneous recovery
- ✓ Intra-op EPS to assess recovery

Secondary Surgery

- Primary Nerve repair is unlikely to be beneficial
- * Recovery after NR reaches a plateau still lacking fn.
- ❖Old Injury > 2yrs

- Birth Related BPI 2-3 months of age
- Good prognosis in general > 90% patients
- EMG Not reliable assessment tool in infants

- Indicators of poor prognosis and severe injury –
- ✓ Biceps paralysis at 3 months
- ✓ Wrist drop at 3 months
- ✓ Absence of external shoulder rotation at 3-4 months

Priorities of the Surgical Targets

- Elbow Flexion
- Shoulder stability and active abduction
- Protective sensation of hand and arm
- Wrist Extension
- Finger Flexion
- Finger Extension
- Wrist Flexion
- Intrinsic muscles of hand

Surgical Management

- Primary/Initial (Fascicular/Epineural coaptation)
- ✓ End to End nerve repair
- ✓ End to side nerve repair
- ✓ Nerve Grafting
- ✓ Nerve transfer
- ✓ Neurolysis
- Secondary/Delayed
- ✓ Musculo-tendinous transfers

Severity of Nerve Injury – Sunderland's Classification

- I Conduction block without Wallerian degeneration
- II Axonal injury with intact Endoneurium
- III Endoneurium is additionally injured
- IV Perineurium surrounding fascicle also disrupted
- V Complete Nerve rupture including Epineurium

Spontaneous Recovery - Not anticipated in Type IV & V

- Type I & II Spontaneous recovery
- Type III Neurolysis/Conservative Mx
- Type IV & V Neuroma excision + Neurotization
- Intra-op differentiation of type III & type IV injury –

Nerve action potential (NAP) –

✓ Small amplitude and slow conduction across neuroma s/o 90% chance of recovery with neurolysis alone

Surgical Exposure

- Supraclavicular Approach
- Infraclavilcular Approach
- Posterior-Subscapular Approach

Supraclavicular Approach – Incision

Axial and Saggital Sections

Relation of Brachial plexus

Complete Supraclavicular Exposure

Infraclavilcular Approach -Incision

Exposure

Lateral and Medial Cord - Branches

Posterior Cord - Branches

Complete Neurovascular dissection

Posterior Approach – Incision

Exposure

Transection of 1st Rib

Dissection of Origin of Plexus

Nerve Transfer

Subject	Donor	Recipient	Remarks
Shoulder Stabilisation	Spinal Accessory	✓Supra-scapular ✓Axillary ✓Radial ✓MCN	1500 myelinated axons Free gracilis muscle transfer
	Radial nerve to triceps – medial head m/c used	✓ Axillary nerve (main trunk) ✓ Ant. Division axillary nerve	
Elbow Stabilisation	Single Ulnar fascicle	✓Nerve to biceps ✓MCN	Oberlin's transfer - Dominant fascicle to FCU
	Single median nerve fascicle	✓Nerve to biceps ✓MCN	
	Medial pectoral	✓MCN	
	ICN	✓MCN	T3-T5 1200 myelinated axons

Subject		Donor	Recipient	Remarks
Protective Sensation		Sensory ICN	✓Lateral cutaneous nerve ✓Median nerve	T ₃ -T ₅
Miscellan	eous	Contralateral C7 transfer (Posterior division or at cord level)	✓Upper Trunk ✓C7 nerve root ✓Lateral cord ✓Posterior cord ✓SSN ✓Lower trunk	Gu et al Used in Pan BPI and children Distance reduced by transection of b/l ASM Graft – Sural nerve/ superficial radial nerve

Contralateral C7 transfer

ICN-MCN transfer

Dual Nerve transfer

- Elbow Flexion –
- Medial pectoral nerve to MCN + UN to N. to Biceps
- Ulnar fascicle to biceps nerve + Median nerve to N. to Brachialis
- Shoulder Abduction –
- ✓ Radial nerve (N. to Triceps) to Axillary nerve + SAN to SSN

Results (Kim et al – 2500 BPI)

Injury	Severity	Criteria	% Success (MRC Grade ≥ 4)
Sharp penetrating	Complete	< 72 hrs	87
		> 72	67 (Direct repair)
		> 72	53 (Nerve grafting)
	Incomplete	NAP +	92 (Neurolysis)
		NAP -	77 (1º Repair)
Blunt			45 (Grafting)
Stretch	Root Avulsion +	Single level	Grade IV/V
		Multilevel	Grade III/IV
	Root Avulsion -		~ 100 (Neurolysis/Grafting)
Pan BPI			35 (Overall)
Infra-clavicular	Lateral cord		~ 100 (Poorer for other cords)

Injury	Severity	Type of repair	Success %
GSW	Complete	Neurolysis	91
		Direct anastamosis	67
		Graft repair	54
	Incomplete	Neurolysis	94
		Direct anastamosis	83
		Graft repair	54

Results – BRBPI (Malessy et al)

Subject	N	FU (yrs)	Inclusion Criteria	Results
External Rotation	86	3	Surgical reconstruction – SSN C5-SSN / XIN-SSN transfer	20 with true external rotation > 20 ⁰ 87 % can reach mouth 75 % can reach back of head
Elbow Flexion	20	2	ICN-MCN / PEC-MCN transfer	86 % elbow flexion ≥ 3 (MRC) PEC - MCN : 93 % ICN - MCN : 81 %
Hand Function	16	3	Reconstruction of C8 & T1	69 % : Raimondi hand score ≥ 3

Outcome After Delayed Oberlin Transfer in Brachial Plexus Injury (Neurosurgery - 2011)‡

- Retrospective 9 patients
- Av. Duration between trauma and Sx 12.2 mo
- Av. FU 26.7 months
- Biceps power pre-op -o/5 and post-op ≥ 2/5 all pts
- 77.8 % gained useful power ≥ 3/5 MRC grading
- ‡ Sedain G, Sharma MS, Sharma BS, Mahapatra AK

Secondary Procedures

- Muscle/tendon transfer
- Functioning free muscle transfer
- Arthrodesis
- Tenodesis
- Corrective osteotomy

Tendon Transfer – General principles

- Tissue Equilibrium Wounds well healed and contractures corrected
- Availability
- Muscle Strength MRC ≥ 4/5
- Excursion Amplitude of range of motion similar
- Direction Direct line of action without angulations
- Synergy Difficult to provide in BPI
- Tension Slightly more than resting muscle length

Tendon Transfer - Options

Joint	Procedure	Remarks
Shoulder	Trapezius to proximal humerus	Improves shoulder abduction and flexion each by about 60°
	Latissimus dorsi or Teres major	Used in BRBPI mainly Inferior results in adults
Elbow	Latissimus dorsi myo-cut. flap	Limited role in extensive UT+MT BPI
	Pectoralis major transfer	Used in extensive UT+MT BPI Limited role for females
	Steindler's Procedure	Augmentative procedure
	SCM	Unacceptable cosmetically
Wrist	Flexor carpi ulnaris/Flexor carpi radialis	Brachialis is used only if forearm muscles not suitable
	Flexor digitorum superficialis	
	Pronator teres	

Wrist Stabilisation

FFMT – Elbow function

- Gracilis harvested from pubic symphysis and pes anserinus along with neurovascular bundle
- Proximal pole anchored to clavicle
- Vascular anastamosis Thoraco-acromial to Branch of profunda femoris
- Neurotisation SAN/ICN to obturator nerve
- Distal pole of gracilis secured to biceps tendon in mid-flexion

FFMT – Prehensile function

- Gracilis transfer Finger flexion
- Origin IInd rib / Clavicle
- Insertion FDP and FPL
- Passed under pronator teres Pulley effect
- Neurotisation ICN to Obturator
- Anastamosis Thoraco-dorsal vessels to profunda femoris
- Graft tensioned Finger extension during elbow flexion and vice-versa

Elbow fn.

Prehensile fn.

FMT – Double functioning

Useful in Pan BPI

Two Stage procedure –

Stage I

- ➤ Nerve reconstruction for shoulder
- > FMT using gracilis for elbow flexion + wrist or finger extension

Stage II

- ➤ Two ICN Neurotisation to IInd gracilis FMT for finger flexion
- Another two ICN for triceps
- Sensory ICN to Lateral cord (Median nerve) for hand sensation
- ❖Doi et al results
- ✓ Good to excellent elbow flexion 96 %
- \checkmark > 30° of active finger flexion 65 %

Arthrodesis – Joint Fusion

- Shoulder Requirements
- ➤ Intact Scapulo-thoracic mobility
- Preserved Trapaezius, levator scapulae, serratus anterior and rhomboid muscle function
- ➤ Optimal position 30° abduction, forward flexion and internal rotation
- ➤ Practical measurement Pt able to get their hand to mouth while maintaining abduction position

- Wrist arthrodesis –
- Weakens power grip
- Kept as last resort
- Hand arthrodesis –
- Mainly for thumb
- CMC or IP joint fusion done

Tenodesis

- Tends to relax secondarily and lose its function
- Most common Wrist to stabilise it in functional position
- Performed when suitable tendon transfers are unavailable –
- > Weak wrist flexors not suitable for transfer
- Tenodesis of antagonistic muscles like finger extensors
- > Helps open the fingers while actively flexing wrist
- By dynamic tenodesis effect

Corrective Osteotomy

- Elbow flexion +nt but active external rotation -ve
- Inwardly rotated arm with hindrance to elbow motion
- Transverse osteotomy of middle 1/3 rd humerus
- Distal part of humerus rotated 30-60° outside
- Fixed using dynamic compression plate
- Commonly performed in BRBPI

Amputation/Prostheses

- Indication –
- > Failed reconstruction with upper limb
- Nuisance or mechanically painful
- Potential hazard for injury
- Mechanical pain from shoulder subluxation

- Trans-Humeral amputation –
- > Relieves mechanical subluxation pain
- ➤ No relief from neuropathic pain

- Mid-forearm amputation / Wrist disarticulation –
- ➤ Insensate digits multiply traumatised

Recent Advances

- Neural conduits +/- Nerve growth factors
- Stem-cells BM-MNCs and MSCs transplantation
- Direct Nerve root transfer Intraplexal
- Nano-scale engineered devices Microanastamosis
- Electrical stimulation guided neural growth
- Gene Therapy

Comment made by Sir Sydney Sunderland-1951

"It is no longer a question of what can be done, but of establishing what should be done"